login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Start with 1; multiply alternately by 3 and 4.
2

%I #33 Nov 13 2022 09:33:18

%S 1,3,12,36,144,432,1728,5184,20736,62208,248832,746496,2985984,

%T 8957952,35831808,107495424,429981696,1289945088,5159780352,

%U 15479341056,61917364224,185752092672,743008370688,2229025112064,8916100448256,26748301344768,106993205379072,320979616137216

%N Start with 1; multiply alternately by 3 and 4.

%C Satisfies Benford's law.

%H Colin Barker, <a href="/A282022/b282022.txt">Table of n, a(n) for n = 0..1000</a>

%H Arno Berger and Theodore P. Hill, <a href="https://doi.org/10.1007/s00283-010-9182-3">Benford's law strikes back: no simple explanation in sight for mathematical gem</a>, The Mathematical Intelligencer 33.1 (2011): 85-91. Also <a href="https://digitalcommons.calpoly.edu/rgp_rsr/72/">at CalPoly</a>.

%H <a href="/index/Be#Benford">Index entries for sequences related to Benford's law</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (0,12).

%F From _Ilya Gutkovskiy_, Feb 09 2017: (Start)

%F O.g.f.: (1 + 3*x)/(1 - 12*x^2).

%F E.g.f.: sqrt(3)*sinh(2*sqrt(3)*x)/2 + cosh(2*sqrt(3)*x).

%F (End)

%F From _Colin Barker_, Feb 09 2017: (Start)

%F a(n) = 2^n * 3^(n/2) for n even.

%F a(n) = 2^(n-1) * 3^((n+1)/2) for n odd.

%F a(n) = 12*a(n-2) for n>1.

%F (End)

%t LinearRecurrence[{0,12},{1,3},30] (* _Harvey P. Dale_, Jun 19 2021 *)

%o (PARI) Vec((1 + 3*x) / (1 - 12*x^2) + O(x^30)) \\ _Colin Barker_, Feb 09 2017

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 08 2017