login
A281990
Numbers k such that (199*10^k - 7)/3 is prime.
0
1, 4, 16, 25, 27, 39, 109, 117, 720, 989, 1451, 1477, 1522, 2242, 2657, 2694, 2929, 5927, 7589, 7844, 9990, 19475, 43896, 44304, 95134, 128343, 129487
OFFSET
1,2
COMMENTS
For k > 1, numbers k such that the digits 66 followed by k-1 occurrences of the digit 3 followed by the digit 1 is prime (see Example section).
a(28) > 3*10^5.
EXAMPLE
4 is in this sequence because (199*10^4 - 7)/3 = 663331 is prime.
Initial terms and associated primes:
a(1) = 1, 661;
a(2) = 4, 663331;
a(3) = 16, 663333333333333331;
a(4) = 25, 663333333333333333333333331;
a(5) = 27, 66333333333333333333333333331; etc.
MATHEMATICA
Select[Range[0, 100000], PrimeQ[(199*10^# - 7)/3] &]
PROG
(PARI) isok(k) = isprime((199*10^k - 7)/3); \\ Michel Marcus, Feb 04 2017
KEYWORD
nonn,more,hard
AUTHOR
Robert Price, Feb 04 2017
EXTENSIONS
a(26)-a(27) from Robert Price, May 21 2020
STATUS
approved