login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281955
T(n,k)=Number of nXk 0..1 arrays with no element unequal to more than four of its king-move neighbors and with new values introduced in order 0 sequentially upwards.
8
1, 2, 2, 4, 8, 4, 8, 30, 30, 8, 16, 112, 133, 112, 16, 32, 420, 587, 587, 420, 32, 64, 1576, 2559, 3389, 2559, 1576, 64, 128, 5912, 11251, 19089, 19089, 11251, 5912, 128, 256, 22176, 49293, 111354, 130416, 111354, 49293, 22176, 256, 512, 83184, 216274
OFFSET
1,2
COMMENTS
Table starts
...1......2.......4.........8.........16..........32............64
...2......8......30.......112........420........1576..........5912
...4.....30.....133.......587.......2559.......11251.........49293
...8....112.....587......3389......19089......111354........640778
..16....420....2559.....19089.....130416......944967.......6763599
..32...1576...11251....111354.....944967.....8606584......77540974
..64...5912...49293....640778....6763599....77540974.....882270370
.128..22176..216274...3716432...48984359...705601833...10123006858
.256..83184..948407..21502354..354789627..6439770627..116604534792
.512.312032.4159753.124531091.2573699813.58888042279.1345813812696
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = 4*a(n-1) -2*a(n-2) +4*a(n-3)
k=3: [order 10] for n>12
k=4: [order 28] for n>32
k=5: [order 69] for n>73
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0. .0..0..0..1. .0..1..0..0. .0..0..0..1. .0..1..0..0
..1..1..1..1. .1..1..1..1. .0..1..1..1. .0..0..0..0. .1..1..1..0
..1..1..1..0. .1..1..1..1. .1..1..1..1. .0..1..1..1. .0..1..1..1
..1..1..1..0. .0..1..1..1. .0..1..1..1. .1..1..1..1. .0..1..0..0
CROSSREFS
Column 1 is A000079(n-1).
Sequence in context: A302965 A302808 A303469 * A316183 A305769 A317118
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Feb 03 2017
STATUS
approved