login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of sets of exactly eight positive integers <= n having a square element sum.
2

%I #11 Feb 02 2017 19:13:27

%S 1,1,3,13,34,86,197,405,786,1446,2532,4263,6938,10953,16837,25281,

%T 37165,53605,75999,106075,145951,198199,265921,352825,463320,602609,

%U 776797,993007,1259503,1585839,1983013,2463629,3042066,3734648,4559849,5538527,6694180

%N Number of sets of exactly eight positive integers <= n having a square element sum.

%H Alois P. Heinz, <a href="/A281868/b281868.txt">Table of n, a(n) for n = 8..1000</a>

%e a(8) = 1: {1,2,3,4,5,6,7,8}.

%e a(10) = 3: {1,2,3,4,5,6,7,8}, {1,3,5,6,7,8,9,10}, {2,3,4,6,7,8,9,10}.

%p b:= proc(n, i, t) option remember;

%p `if`(i<t, 0, `if`(n=0, `if`(t=0, 1, 0),

%p `if`(t<1 or n<t*(t+1)/2 or n>(t+1)*(2*i-t)/2, 0,

%p `if`(i>n, 0, b(n-i, i-1, t-1))+b(n, i-1, t))))

%p end:

%p a:= proc(n) option remember; `if`(n<0, 0, a(n-1)+add(

%p b(j^2-n, n-1, 7), j=isqrt(n-28)..isqrt(8*n-28)))

%p end:

%p seq(a(n), n=8..60);

%Y Column k=8 of A281871.

%K nonn

%O 8,3

%A _Alois P. Heinz_, Feb 01 2017