login
Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 395", based on the 5-celled von Neumann neighborhood.
4

%I #11 May 05 2024 01:37:15

%S 1,1,111,100,11101,10111,1110100,1010101,111010111,101110100,

%T 11101010101,10101110111,1110101010100,1011101110101,111010101010111,

%U 101011101110100,11101010101010101,10111010101110111,1110101010101010100,1010111010101110101

%N Binary representation of the x-axis, from the left edge to the origin, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 395", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A281748/b281748.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A281748/a281748.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Chai Wah Wu_, May 05 2024: (Start)

%F a(n) = - a(n-1) + a(n-3) + a(n-4) + 100000000*a(n-8) + 100000000*a(n-9) - 100000000*a(n-11) - 100000000*a(n-12) for n > 19.

%F G.f.: (-1000000000*x^19 - 1000000000*x^18 - 1000000000*x^17 + 1000000000*x^15 + 90000000*x^12 + 90100000*x^11 + 11000000*x^9 + 11999000*x^8 + 2109000*x^7 + 1120000*x^6 + 21100*x^5 + 11199*x^4 + 210*x^3 + 112*x^2 + 2*x + 1)/(100000000*x^12 + 100000000*x^11 - 100000000*x^9 - 100000000*x^8 - x^4 - x^3 + x + 1). (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 395; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Part[ca[[i]] [[i]], Range[1, i]], 10], {i, 1, stages - 1}]

%Y Cf. A281749, A281750, A281751.

%K nonn,easy

%O 0,3

%A _Robert Price_, Jan 29 2017