The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A281747 Smallest b > 1 such that p = prime(n) satisfies b^(p-1) == 1 (mod p^p). 1
 5, 26, 1068, 82681, 5392282366, 11356596271444, 34451905517028761171, 340625514346676110671584, 308318432223607315018221180590, 8566187045843934976180705488213013173127, 1099862052702774330481800364074681495062836757, 8170421001593885871548404108552563632485969048059688187 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) is the element in row prime(n), column n of the table in A257833. Is the sequence always nondecreasing, or stronger, is it always increasing? For odd primes p, if c is a primitive root mod p^p then b == c^(p^(p-1)) (mod p^p) satisfies this. Thus a(n) < prime(n)^prime(n) for n > 1. - Robert Israel, Jan 30 2017 LINKS Robert Israel, Table of n, a(n) for n = 1..76 W. Keller and J. Richstein, Solutions of the congruence a^(p-1) == 1 (mod p^r), Math. Comp. 74 (2005), 927-936. MAPLE f:= proc(p) local c, j; c:= numtheory:-primroot(p^p); min(seq(c &^ (j*p^(p-1)) mod p^p, j=1..p-2)) end proc: 5, seq(f(ithprime(i)), i=2..15); # Robert Israel, Jan 30 2017 MATHEMATICA Table[b = 2; While[PowerMod[b, (# - 1), #^#] &@ Prime@ n != 1, b++]; b, {n, 4}] (* Michael De Vlieger, Jan 30 2017 *) PROG (PARI) a(n) = my(p=prime(n), b=2); while(Mod(b, p^p)^(p-1)!=1, b++); b CROSSREFS Cf. A257833. Sequence in context: A118366 A226125 A132509 * A064489 A081089 A180928 Adjacent sequences: A281744 A281745 A281746 * A281748 A281749 A281750 KEYWORD nonn,hard,more AUTHOR Felix Fröhlich, Jan 29 2017 EXTENSIONS More terms from Robert Israel, Jan 30 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 17:32 EST 2022. Contains 358470 sequences. (Running on oeis4.)