Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 Oct 19 2018 09:18:58
%S 1,3,-18,12,21,-36,36,24,-90,12,54,-72,84,42,-144,72,93,-108,36,60,
%T -252,96,108,-144,180,93,-252,12,168,-180,216,96,-378,144,162,-288,84,
%U 114,-360,168,270,-252,288,132,-504,72,216,-288,372,171,-558,216,294,-324
%N Expansion of r(q) * s(q) in powers of q where r(), s() are cubic AGM functions.
%C Cubic AGM theta functions: r(q) (see A004016), s(q) (A005928), t(q) (A005882).
%H Seiichi Manyama, <a href="/A281722/b281722.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..5000 from G. C. Greubel)
%F Convolution of the sequences A004016 and A005928.
%F The g.f. is the product of the g.f.'s for A004016 and A005928. - _N. J. A. Sloane_, Jan 30 2017
%F Expansion of eta(q)^3 * (eta(q)^3 + 9 * eta(q^9)^3) / eta(q^3)^2 in powers of q.
%F G.f. is a period 1 Fourier series which satisfies f(-1 / (9 t)) = 81 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A144614.
%F a(3*n + 2) = A096726(3*n + 2) - 27 * A033686(n). a(n) == A096726(n) (mod 27). - _Michael Somos_, Sep 04 2017
%e G.f. = 1 + 3*q - 18*q^2 + 12*q^3 + 21*q^4 - 36*q^5 + 36*q^6 + 24*q^7 + ...
%t a[ n_] := SeriesCoefficient[ QPochhammer[ q]^3 (QPochhammer[ q]^3 + 9 q QPochhammer[ q^9]^3) / QPochhammer[ q^3]^2, {q, 0, n}];
%o (PARI) {a(n) = if( n<0, 0, my(A = x * O(x^n)); polcoeff( eta(x + A)^3 * (eta(x + A)^3 + 9 * x * eta(x^9 + A)^3) / eta(x^3 + A)^2, n))};
%Y Cf. A004016, A005928, A033686, A096726, A144614.
%K sign
%O 0,2
%A _Michael Somos_, Jan 28 2017