login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sierpinski stellated octahedron numbers: a(n) = 2*(-3*2^(n+1) + 2^(2n+3) + 5).
2

%I #31 Dec 08 2017 18:29:58

%S 14,50,218,938,3914,16010,64778,260618,1045514,4188170,16764938,

%T 67084298,268386314,1073643530,4294770698,17179475978,68718690314,

%U 274876334090,1099508482058,4398040219658,17592173461514,70368719011850,281474926379018,1125899806179338,4503599426043914,18014398106828810

%N Sierpinski stellated octahedron numbers: a(n) = 2*(-3*2^(n+1) + 2^(2n+3) + 5).

%C Stella octangula with Sierpinski recursion.

%H Colin Barker, <a href="/A281699/b281699.txt">Table of n, a(n) for n = 0..1000</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Sierpinski_triangle">Sierpinski triangle</a>, see section on higher dimensional analogs.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (7,-14,8).

%F a(n) = 8*(2^(2*n+1)+2) - 6*(2^(n+1)+1).

%F From _Colin Barker_, Jan 28 2017: (Start)

%F a(n) = 7*a(n-1) - 14*a(n-2) + 8*a(n-3) for n>2.

%F G.f.: 2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)).

%F (End)

%t Table[8 (2^(2 n + 1) + 2) - 6 (2^(n + 1) + 1), {n, 0, 25}] (* or *)

%t LinearRecurrence[{7, -14, 8}, {14, 50, 218}, 26] (* or *)

%t CoefficientList[Series[2 (7 - 24 x + 32 x^2)/((1 - x) (1 - 2 x) (1 - 4 x)), {x, 0, 25}], x] (* _Michael De Vlieger_, Jan 28 2017 *)

%o (PARI) Vec(2*(7 - 24*x + 32*x^2) / ((1 - x)*(1 - 2*x)*(1 - 4*x)) + O(x^30)) \\ _Colin Barker_, Jan 28 2017

%o (PARI) a(n) = 16*4^n - 12*2^n + 10 \\ _Charles R Greathouse IV_, Jan 29 2017

%Y Cf. A007588, A027693, A052539, A052548, A067771, A178789, A233774, A279511.

%K nonn,easy

%O 0,1

%A _Steven Beard_, Jan 27 2017