login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).
2

%I #7 Sep 18 2018 16:10:05

%S 1,3,6,11,18,29,42,62,86,119,159,211,273,352,446,562,697,864,1054,

%T 1284,1550,1860,2220,2639,3114,3669,4293,5011,5823,6745,7783,8956,

%U 10268,11747,13390,15237,17281,19561,22089,24889,27979,31405,35157,39309,43856,48849,54319,60309,66840,73992,81760,90243

%N Expansion of Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).

%C Total number of parts in all partitions of n into Fibonacci parts (with a single type of 1).

%C Convolution of A003107 and A005086.

%H Alois P. Heinz, <a href="/A281689/b281689.txt">Table of n, a(n) for n = 1..20000</a>

%H <a href="/index/Par#partN">Index entries for related partition-counting sequences</a>

%F G.f.: Sum_{k>=2} x^Fibonacci(k)/(1 - x^Fibonacci(k)) / Product_{k>=2} (1 - x^Fibonacci(k)).

%F a(n) = Sum_{k=1..n} k * A319394(n,k). - _Alois P. Heinz_, Sep 18 2018

%e a(5) = 18 because we have [5], [3, 2], [3, 1, 1], [2, 2, 1], [2, 1, 1, 1], [1, 1, 1, 1, 1] and 1 + 2 + 3 + 3 + 4 + 5 = 18.

%p h:= proc(n) option remember; `if`(n<1, 0, `if`((t->

%p issqr(t+4) or issqr(t-4))(5*n^2), n, h(n-1)))

%p end:

%p b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],

%p b(n, h(i-1))+(p->p+[0, p[1]])(b(n-i, h(min(n-i, i)))))

%p end:

%p a:= n-> b(n, h(n))[2]:

%p seq(a(n), n=1..70); # _Alois P. Heinz_, Sep 18 2018

%t Rest[CoefficientList[Series[Sum[x^Fibonacci[k]/(1 - x^Fibonacci[k]), {k, 2, 20}]/Product[1 - x^Fibonacci[k], {k, 2, 20}], {x, 0, 52}], x]]

%Y Cf. A000045, A003107, A005086, A240225, A319394.

%K nonn

%O 1,2

%A _Ilya Gutkovskiy_, Jan 27 2017