%I #15 Feb 07 2017 15:02:47
%S 1,2,15,20,85,78,259,200,585,410,1111,732,1885,1190,2955,1808,4369,
%T 2610,6175,3620,8421,4862,11155,6360,14425,8138,18279,10220,22765,
%U 12630,27931,15392,33825,18530,40495,22068,47989,26030,56355,30440,65641,35322
%N The least common multiple of 1+n and 1+n^2.
%H Colin Barker, <a href="/A281660/b281660.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-6,0,4,0,-1)
%F a(n) = lcm(1+n,1+n^2) = (1+n)*(1+n^2)/gcd(1+n,1+n^2) = A053698(n)/A000034(n).
%F G.f.: (5*x^2+1) *(x^4+2*x^3+6*x^2+2*x+1) / ( (x-1)^4 *(1+x)^4 ).
%F a(2*n+1) = 2*A059722(n+1). - _R. J. Mathar_, Jan 28 2017
%F a(n) = ((3 + (-1)^n)*(1+n+n^2+n^3)) / 4. - _Colin Barker_, Feb 07 2017
%p A281660 := proc(n)
%p ilcm(1+n,1+n^2) ;
%p end proc:
%K nonn,easy
%O 0,2
%A _R. J. Mathar_, Jan 26 2017