login
A281554
Number of nonassociative right conjugacy closed loops of order n up to isomorphism.
1
0, 0, 0, 0, 0, 3, 0, 19, 5, 16, 0, 155, 0, 97, 17, 6317, 0, 1901, 0, 8248, 119, 10487, 0, 471995, 119, 151971, 152701
OFFSET
1,6
COMMENTS
For a groupoid Q and x in Q, define the right (left) translation map R_x: Q->Q by yR_x=yx (L_x: Q->Q by yL_x=xy). A loop is a groupoid Q with neutral element 1 in which all translations are bijections in Q. A loop Q is right conjugacy closed if (R_x)^(-1)R_yR_x is a right translation for every x, y in Q. Since any finite loop of order n < 5 is a group, then nonassociative right conjugacy closed loops exist when the order n > 5. In the literature, every nonassociative right conjugacy closed loop of order n can be represented as a union of certain conjugacy classes of a transitive group of degree n. The number of nonassociative right conjugacy closed loops of order n up to isomorphism were summarized in LOOPS version 3.3.0, Computing with quasigroups and loops in GAP (Groups, Algorithm and Programming).
LINKS
G. P. Nagy and P. Vojtechovsky, Loops version 3.3.0, Computing with quasigroups and loops in GAP, 2016.
EXAMPLE
a(6)=3 because there are 3 nonassociative right conjugacy closed loops of order 6 and a(8)=19 because there are 19 nonassociative right conjugacy closed loops of order 8.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Muniru A Asiru, Jan 24 2017
STATUS
approved