login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A281503
Solutions x to the negative Pell equation y^2 = 33*x^2 - 8 with x,y >= 0.
2
1, 3, 43, 137, 1977, 6299, 90899, 289617, 4179377, 13316083, 192160443, 612250201, 8835201001, 28150193163, 406227085603, 1294296635297, 18677610736737, 59509495030499, 858763866804299, 2736142474767657, 39484460262261017, 125803044344281723
OFFSET
1,2
LINKS
M. A. Gopalan, S. Vidhyalakshmi, E. Premalatha, R. Janani, On The Negative Pell Equation y^2 = 33*x^2 - 8, International Journal of Multidisciplinary Research and Modern Education (IJMRME), Volume II, Issue I, 2016.
FORMULA
a(n) = 46*a(n-2) - a(n-4) for n>4.
G.f.: x*(1 - x)*(1 + 4*x + x^2) / (1 - 46*x^2 + x^4).
EXAMPLE
3 is in the sequence because (x, y) = (3, 17) is a solution to y^2 = 33*x^2 - 8.
MATHEMATICA
LinearRecurrence[{0, 46, 0, -1}, {1, 3, 43, 137}, 30] (* Harvey P. Dale, Mar 22 2022 *)
PROG
(PARI) Vec(x*(1 - x)*(1 + 4*x + x^2) / (1 - 46*x^2 + x^4) + O(x^30))
CROSSREFS
Cf. A281504.
Sequence in context: A062647 A003525 A042661 * A030990 A306970 A376737
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Jan 23 2017
STATUS
approved