Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #21 Mar 01 2020 07:17:40
%S 0,1,2,5,6,66,77,626,5005,7777,22122,64446,87978,399993,1287821,
%T 5614165,5679765,6407046,6865686,7107017,8349438,8547458,282777282,
%U 1220330221,43474247434,43833533834,64630703646,68622322686,73855855837,1249451549421,2468208028642
%N Palindromic numbers which are also palindromic in their binary reflected Gray code representation.
%H Chai Wah Wu, <a href="/A281378/b281378.txt">Table of n, a(n) for n = 1..47</a>
%e 626 is in the sequence because binary reflected Gray code for 626 is '1101001011' and both 626 and '1101001011' are palindromics.
%t Select[Range[10^7], And[Reverse@ # == # &@ IntegerDigits@ #, Reverse@ # == # &@ Abs[Prepend[Most@ #, 0] - #] &@ IntegerDigits[#, 2]] &] (* _Michael De Vlieger_, Jan 21 2017 *)
%o (Python)
%o def G(n):
%o ....return bin(n^(n/2))[2:]
%o i=1
%o j=1
%o while j<=23:
%o ....if i==int(str(i)[::-1]) and G(i)==G(i)[::-1]:
%o ........print str(j)+" "+str(i)
%o ........j+=1
%o ....i+=1
%o (PARI) lista(nn) = {my(v, w); for(k=0, nn, if((w=digits(k))==Vecrev(w) && (v=binary(bitxor(k, k>>1)))==Vecrev(v), print1(k, ", "))); } \\ _Jinyuan Wang_, Mar 01 2020
%Y Cf. A002113, A006995, A014550, A281379.
%K nonn,base
%O 1,3
%A _Indranil Ghosh_, Jan 20 2017
%E 0 and more terms added by _Chai Wah Wu_, Jan 23 2017