login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 1 + Sum_{n>=1} x^(3*n-2) / Product_{k=1..n} (1-x^k).
1

%I #18 Oct 13 2017 05:02:54

%S 1,1,1,1,2,2,3,4,5,6,9,10,13,17,21,25,33,39,49,60,73,88,110,130,158,

%T 191,230,273,331,391,468,556,660,779,927,1087,1284,1510,1775,2075,

%U 2438,2842,3323,3872,4510

%N G.f.: 1 + Sum_{n>=1} x^(3*n-2) / Product_{k=1..n} (1-x^k).

%H Roland Bacher, P. De La Harpe, <a href="https://hal.archives-ouvertes.fr/hal-01285685/document">Conjugacy growth series of some infinitely generated groups</a>, hal-01285685v2, 2016.

%F a(n) ~ Pi^2 * exp(Pi*sqrt(2*n/3)) / (12*sqrt(3)*n^2). - _Vaclav Kotesovec_, Oct 13 2017

%t nmax = 50; CoefficientList[Series[1 + Sum[x^(3*k-2)/QPochhammer[x, x, k], {k, 1, nmax}], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Oct 13 2017 *)

%t Flatten[{1, Table[PartitionsP[n] - PartitionsP[n-1] - PartitionsP[n-2] + PartitionsP[n-3], {n, 3, 50}]}] (* _Vaclav Kotesovec_, Oct 13 2017 *)

%Y Apart from leading term, essentially identical to A008483.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Jan 22 2017