login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Triangle read by rows: number of topologies of n nested circles intersecting at most as triples, according to number of factors.
1

%I #11 May 02 2020 07:34:15

%S 1,2,1,11,2,1,44,14,2,1,169,66,14,2,1,609,323,70,14,2,1,2253,1431,356,

%T 70,14,2,1,8779,6320,1695,361,70,14,2,1,36319,27420,8081,1739,361,70,

%U 14,2,1,157297,119821,37849,8455,1745,361,70,14,2,1,701901,528557,176894,40549,8510,1745,361,70,14,2,1

%N Triangle read by rows: number of topologies of n nested circles intersecting at most as triples, according to number of factors.

%H R. J. Mathar, <a href="http://arxiv.org/abs/1603.00077">Topologically Distinct Sets of Non-intersecting Circles in the Plane</a>, arXiv:1603.00077 [math.CO], 2016.

%e Triangle begins:

%e 1,

%e 2,1,

%e 11,2,1,

%e 44,14,2,1,

%e 169,66,14,2,1,

%e 609,323,70,14,2,1,

%e 2253,1431,356,70,14,2,1,

%e 8779,6320,1695,361,70,14,2,1,

%e 36319,27420,8081,1739,361,70,14,2,1,

%e ...

%Y Row sums give A281349.

%K nonn,tabl

%O 1,2

%A _N. J. A. Sloane_, Jan 20 2017