login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of nXk 0..1 arrays with no element equal to more than three of its king-move neighbors and with new values introduced in order 0 sequentially upwards.
8

%I #4 Jan 20 2017 14:15:14

%S 1,2,2,4,8,4,8,25,25,8,16,85,68,85,16,32,286,193,193,286,32,64,969,

%T 544,607,544,969,64,128,3281,1539,1892,1892,1539,3281,128,256,11114,

%U 4355,5868,6256,5868,4355,11114,256,512,37649,12332,18189,19700,19700,18189

%N T(n,k)=Number of nXk 0..1 arrays with no element equal to more than three of its king-move neighbors and with new values introduced in order 0 sequentially upwards.

%C Table starts

%C ...1......2.....4......8......16......32.......64......128.......256.......512

%C ...2......8....25.....85.....286.....969.....3281....11114.....37649....127541

%C ...4.....25....68....193.....544....1539.....4355....12332.....34907.....98797

%C ...8.....85...193....607....1892....5868....18189....56154....173062....534110

%C ..16....286...544...1892....6256...19700....60540...185696....569832...1754082

%C ..32....969..1539...5868...19700...63168...198619...620828...1944159...6105081

%C ..64...3281..4355..18189...60540..198619...639142..2039214...6489813..20683647

%C .128..11114.12332..56154..185696..620828..2039214..6658147..21625033..70229690

%C .256..37649.34907.173062..569832.1944159..6489813.21625033..71489598.235986575

%C .512.127541.98797.534110.1754082.6105081.20683647.70229690.235986575.791069059

%H R. H. Hardin, <a href="/A281344/b281344.txt">Table of n, a(n) for n = 1..311</a>

%F Empirical for column k:

%F k=1: a(n) = 2*a(n-1)

%F k=2: a(n) = 3*a(n-1) +a(n-2) +2*a(n-3) -2*a(n-4) -4*a(n-5)

%F k=3: [order 9] for n>10

%F k=4: [order 18] for n>21

%F k=5: [order 49] for n>55

%F k=6: [order 98] for n>107

%e Some solutions for n=4 k=4

%e ..0..1..0..0. .0..0..1..1. .0..0..0..1. .0..0..0..0. .0..1..1..1

%e ..0..1..0..1. .0..1..0..1. .0..1..1..0. .0..1..1..1. .0..1..0..0

%e ..1..1..0..1. .0..1..0..0. .1..0..0..1. .1..0..0..0. .0..1..0..1

%e ..0..0..0..1. .1..0..1..1. .1..1..1..0. .1..0..1..1. .0..1..0..1

%Y Column 1 is A000079(n-1).

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Jan 20 2017