login
A281321
Number of n X 3 0..2 arrays with no element equal to more than one of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1
1, 46, 1266, 27144, 521848, 9439296, 164206368, 2780073856, 46137121152, 754039756800, 12175185631744, 194665401600000, 3087240149809152, 48627451780710400, 761481161055412224, 11864530809764020224
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = 28*a(n-1) - 180*a(n-2) - 224*a(n-3) - 64*a(n-4) for n>5.
Empirical g.f.: x*(1 + 18*x + 158*x^2 + 200*x^3 + 64*x^4) / (1 - 14*x - 8*x^2)^2. - Colin Barker, Feb 18 2019
EXAMPLE
Some solutions for n=4:
..0..1..1. .0..1..1. .0..1..2. .0..1..0. .0..0..0. .0..1..1. .0..0..0
..2..0..1. .0..0..1. .1..0..0. .1..0..2. .1..2..1. .2..2..1. .1..2..2
..0..1..0. .2..1..1. .1..2..0. .0..1..2. .1..0..1. .2..1..2. .0..1..0
..1..0..2. .0..0..2. .0..0..2. .2..0..2. .2..2..0. .2..0..2. .2..0..2
CROSSREFS
Column 3 of A281326.
Sequence in context: A333066 A261940 A060561 * A188412 A066403 A286788
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 20 2017
STATUS
approved