Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Jan 19 2017 12:52:01
%S 34,38,66,102,162,358,578,934,2082,3366,5442,12134,19618,31718,70722,
%T 114342,184866,412198,666434,1077478,2402466,3884262,6280002,14002598,
%U 22639138,36602534,81613122,131950566,213335202,475676134,769064258,1243408678,2772443682
%N Solutions x to the negative Pell equation y^2 = 72*x^2 - 83232 with x,y >= 0.
%C The corresponding values of y are in A281240.
%H Colin Barker, <a href="/A281239/b281239.txt">Table of n, a(n) for n = 1..1000</a>
%H S. Vidhyalakshmi, V. Krithika, K. Agalya, <a href="http://www.ijeter.everscience.org/Manuscripts/Volume-4/Issue-2/Vol-4-issue-2-M-04.pdf">On The Negative Pell Equation y^2 = 72*x^2 - 8</a>, International Journal of Emerging Technologies in Engineering Research (IJETER), Volume 4, Issue 2, February (2016).
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,6,0,0,-1).
%F a(n) = 6*a(n-3) - a(n-6) for n>6.
%F G.f.: 2*x*(17 + 19*x + 33*x^2 - 51*x^3 - 33*x^4 - 19*x^5) / (1 - 6*x^3 + x^6).
%e 38 is in the sequence because (x, y) = (38,144) is a solution to y^2 = 72*x^2 - 83232.
%o (PARI) Vec(2*x*(17 + 19*x + 33*x^2 - 51*x^3 - 33*x^4 - 19*x^5) / (1 - 6*x^3 + x^6) + O(x^40))
%Y Cf. A281240.
%Y Equals (1/4)* A281241.
%K nonn,easy
%O 1,1
%A _Colin Barker_, Jan 19 2017