login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A281129
T(n,k)=Number of nXk 0..2 arrays with no element equal to more than one of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
6
0, 0, 0, 1, 2, 1, 2, 28, 28, 2, 8, 208, 574, 208, 8, 28, 1364, 5590, 5590, 1364, 28, 94, 8354, 48828, 75668, 48828, 8354, 94, 304, 48992, 394202, 923678, 923678, 394202, 48992, 304, 960, 278966, 3042893, 10441416, 15835126, 10441416, 3042893, 278966, 960
OFFSET
1,5
COMMENTS
Table starts
....0.......0..........1............2............8............28............94
....0.......2.........28..........208.........1364..........8354.........48992
....1......28........574.........5590........48828........394202.......3042893
....2.....208.......5590........75668.......923678......10441416.....112649322
....8....1364......48828.......923678.....15835126.....250872018....3803844412
...28....8354.....394202.....10441416....250872018....5550177494..117185694820
...94...48992....3042893....112649322...3803844412..117185694820.3459450309336
..304..278966...22772368...1178277478..55967077710.2402634147622
..960.1554744..166675727..12052427112.805490418258
.2976.8524848.1199580226.121217893114
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 4*a(n-1) -8*a(n-3) -4*a(n-4) for n>7
k=2: a(n) = 8*a(n-1) -8*a(n-2) -30*a(n-3) -24*a(n-4) -8*a(n-5) -a(n-6)
k=3: [order 23] for n>30
EXAMPLE
Some solutions for n=4 k=4
..0..1..1..0. .0..1..1..2. .0..0..1..2. .0..1..0..0. .0..0..1..2
..0..2..2..1. .0..2..2..1. .1..2..0..2. .0..2..1..2. .2..2..0..1
..1..0..1..0. .1..1..0..2. .0..2..0..1. .1..1..0..1. .0..1..2..2
..2..2..1..0. .2..2..1..1. .1..0..1..2. .0..2..0..2. .2..1..0..2
CROSSREFS
Column 1 is A280279.
Sequence in context: A228690 A121721 A173476 * A136156 A191657 A155796
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 15 2017
STATUS
approved