%I #47 Jan 30 2025 19:11:49
%S 3,5,11,431,569
%N Numbers k such that Fibonacci(k) and Fibonacci(k+2) are both prime.
%C Smaller primes of the Fibonacci prime pairs in A073340.
%C See the comment to A073340 - _Harvey P. Dale_, Jan 30 2025
%H J. B. Cosgrave and K. Dilcher, <a href="https://fq.math.ca/Papers1/51-2/CosgraveDilcher-1.pdf">Pairs of reciprocal quadratic congruences involving primes</a>, Fig. Quart. 51 (2) (2013) 98-111
%F a(n) = A279795(n) - 2.
%F a(n) = A073340(2n-1).
%e 11 is in the sequence because Fibonacci(11) = 89 and Fibonacci(13) = 233 are both prime.
%t Select[Range[600],PrimeQ[Fibonacci[#]] && PrimeQ[Fibonacci[#+2]] &] (* _Stefano Spezia_, Nov 15 2024 *)
%t SequencePosition[Table[If[PrimeQ[Fibonacci[n]],1,0],{n,600}],{1,_,1}][[;;,1]] (* _Harvey P. Dale_, Jan 30 2025 *)
%Y First differs from A101315 at a(5).
%Y Cf. A000045, A001359, A001605, A073340, A101315, A279795.
%K more,nonn,changed
%O 1,1
%A _Bobby Jacobs_, Jan 14 2017