login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerator of sum of reciprocals of numbers less than n that do not divide n.
1

%I #7 Jan 15 2017 11:45:41

%S 0,0,1,1,13,9,29,59,1163,569,4861,21341,58301,79139,619181,260041,

%T 1715839,1808487,10190221,116220883,32925391,966183,13920029,

%U 455451475,4597423223,1536962359,64517796001,154777722503,235091155703,3714867879427,6975593267347,75441657715841

%N Numerator of sum of reciprocals of numbers less than n that do not divide n.

%F a(n) = numerator(H_n - Sum_{d|n} 1/d), where H_n is the n-th harmonic number.

%F a(n) = numerator(A001008(n)/A002805(n) - A000203(n)/n).

%F Numerators of coefficients in expansion of -log(1 - x)/(1 - x) - Sum_{k>=1} log(1/(1 - x^k)).

%e a(6) = 9 because 6 has 4 divisors {1,2,3,6} therefore 2 non-divisors {4,5} and 1/4 + 1/5 = 9/20.

%e 0, 0, 1/2, 1/3, 13/12, 9/20, 29/20, 59/70, 1163/840, 569/504, 4861/2520, 21341/27720, 58301/27720, 79139/51480, 619181/360360, 260041/180180, ...

%t Table[Numerator[HarmonicNumber[n] - DivisorSigma[-1, n]], {n, 1, 32}]

%t Table[Numerator[HarmonicNumber[n] - DivisorSigma[1, n]/n], {n, 1, 32}]

%Y Cf. A000203, A001008, A002805, A017665, A017666, A024816, A277790, A281086 (denominators).

%K nonn,frac

%O 1,5

%A _Ilya Gutkovskiy_, Jan 14 2017