login
A281081
Expansion of Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).
5
1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 2, 2, 0, 0, 1, 1, 1, 1, 0, 0, 2, 2, 0, 0, 2, 3, 1, 0, 1, 2, 1, 0, 0, 0, 1, 2, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 2, 3, 1, 0, 0, 1, 2
OFFSET
0,47
COMMENTS
Number of partitions of n into distinct centered triangular numbers (A005448).
FORMULA
G.f.: Product_{k>=0} (1 + x^(3*k*(k+1)/2+1)).
EXAMPLE
a(46) = 2 because we have [46] and [31, 10, 4, 1].
MATHEMATICA
nmax = 105; CoefficientList[Series[Product[1 + x^(3 k (k + 1)/2 + 1), {k, 0, nmax}], {x, 0, nmax}], x]
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Jan 14 2017
STATUS
approved