Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jan 14 2017 12:01:38
%S 0,1056,9188,30808,89147,231146,566178,1343304,3132736,7230554,
%T 16583786,37859204,86112706,195237270,441322324,994760604,2236239158,
%U 5014472488,11217924498,25041061688,55784820452,124041914686,275341091110
%N Number of nX7 0..1 arrays with no element equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Column 7 of A281080.
%H R. H. Hardin, <a href="/A281079/b281079.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 9*a(n-1) -32*a(n-2) +56*a(n-3) -48*a(n-4) +16*a(n-5) +4*a(n-8) -20*a(n-9) +26*a(n-10) +18*a(n-11) -66*a(n-12) +46*a(n-13) -8*a(n-15) -6*a(n-16) +14*a(n-17) -4*a(n-18) -12*a(n-19) -5*a(n-20) +25*a(n-21) -10*a(n-22) -6*a(n-23) +7*a(n-24) -3*a(n-25) -6*a(n-26) +10*a(n-27) -2*a(n-28) -2*a(n-29) -a(n-32) +a(n-33) for n>42
%e Some solutions for n=4
%e ..0..1..1..0..1..0..1. .0..1..1..1..1..0..1. .0..1..0..1..0..1..1
%e ..0..0..1..0..0..1..0. .1..0..0..0..1..0..1. .1..0..1..0..1..0..0
%e ..1..0..1..1..0..1..0. .0..1..1..0..1..0..0. .1..0..1..0..1..0..1
%e ..1..0..0..1..1..0..1. .0..1..0..1..0..1..0. .1..0..1..0..0..1..1
%Y Cf. A281080.
%K nonn
%O 1,2
%A _R. H. Hardin_, Jan 14 2017