login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of nX6 0..1 arrays with no element equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
1

%I #4 Jan 14 2017 12:00:41

%S 0,318,2948,10474,32244,89042,231146,578810,1415986,3412832,8138242,

%T 19255302,45279250,105930602,246729068,572425420,1323415002,

%U 3050017738,7009194836,16066007352,36738631114,83830589316,190908674356

%N Number of nX6 0..1 arrays with no element equal to more than two of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.

%C Column 6 of A281080.

%H R. H. Hardin, <a href="/A281078/b281078.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 9*a(n-1) -32*a(n-2) +56*a(n-3) -48*a(n-4) +16*a(n-5) +4*a(n-7) -20*a(n-8) +26*a(n-9) +18*a(n-10) -66*a(n-11) +46*a(n-12) -14*a(n-14) +14*a(n-15) -4*a(n-16) -12*a(n-17) -5*a(n-18) +25*a(n-19) -10*a(n-20) -2*a(n-21) -a(n-22) -5*a(n-23) +10*a(n-24) -2*a(n-25) -2*a(n-26) -a(n-28) +a(n-29) for n>37

%e Some solutions for n=4

%e ..0..0..1..0..0..1. .0..0..0..1..1..0. .0..1..1..1..0..1. .0..0..1..1..0..1

%e ..0..1..0..1..0..1. .1..1..0..0..1..0. .0..0..0..1..0..0. .1..0..0..1..1..0

%e ..1..0..1..0..1..0. .1..0..1..0..1..0. .1..1..0..1..0..1. .1..1..0..0..1..0

%e ..0..0..1..0..1..1. .0..1..1..0..1..1. .0..1..0..1..1..0. .0..1..1..0..1..0

%Y Cf. A281080.

%K nonn

%O 1,2

%A _R. H. Hardin_, Jan 14 2017