login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX4 0..2 arrays with no element equal to more than one of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
1

%I #4 Jan 11 2017 15:14:33

%S 11,205,1554,14106,126267,1121528,9986376,88940022,791997382,

%T 7052519878,62801413162,559236961207,4979918315253,44345374930680,

%U 394888443546716,3516418473800700,31313145020210260,278838553941378885

%N Number of nX4 0..2 arrays with no element equal to more than one of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.

%C Column 4 of A280961.

%H R. H. Hardin, <a href="/A280957/b280957.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) -25*a(n-2) +62*a(n-3) +6*a(n-4) -470*a(n-5) -199*a(n-6) -97*a(n-7) +1761*a(n-8) +1271*a(n-9) -4651*a(n-10) +16916*a(n-11) +28022*a(n-12) -48991*a(n-13) -17485*a(n-14) +9764*a(n-15) -403040*a(n-16) -181089*a(n-17) +1006721*a(n-18) +635719*a(n-19) -545439*a(n-20) +450907*a(n-21) +419840*a(n-22) -1904900*a(n-23) -1409770*a(n-24) +462471*a(n-25) -68469*a(n-26) -393605*a(n-27) +577614*a(n-28) +1161352*a(n-29) +807943*a(n-30) +65475*a(n-31) -70526*a(n-32) -17768*a(n-33) -450612*a(n-34) -560853*a(n-35) -288048*a(n-36) +109569*a(n-37) +243445*a(n-38) +191920*a(n-39) +25889*a(n-40) -30729*a(n-41) -31913*a(n-42) -14398*a(n-43) -9025*a(n-44) +830*a(n-45) +2189*a(n-46) +2423*a(n-47) +167*a(n-48) -140*a(n-49) -187*a(n-50) +2*a(n-51) +10*a(n-52) +4*a(n-53) -a(n-54) for n>57

%e Some solutions for n=4

%e ..0..1..0..1. .0..0..1..1. .0..1..0..2. .0..1..0..1. .0..1..0..0

%e ..2..0..1..2. .2..2..0..0. .0..2..1..1. .0..2..1..0. .0..1..2..1

%e ..1..2..0..2. .0..1..2..1. .2..0..0..2. .1..0..2..2. .2..0..1..0

%e ..0..2..1..0. .0..1..0..0. .1..2..1..0. .2..1..0..0. .0..2..2..1

%Y Cf. A280961.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jan 11 2017