login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A280931 a(n) = 2*F(n-1) + 9*F(n-4) + 9*F(n-7) where n >= 7 and F = A000045. 2
34, 62, 96, 158, 254, 412, 666, 1078, 1744, 2822, 4566, 7388, 11954, 19342, 31296, 50638, 81934, 132572, 214506, 347078, 561584, 908662, 1470246, 2378908, 3849154, 6228062, 10077216, 16305278, 26382494, 42687772, 69070266, 111758038, 180828304, 292586342 (list; graph; refs; listen; history; text; internal format)
OFFSET
7,1
LINKS
H. Zhao and X. Li, On the Fibonacci numbers of trees, The Fibonacci Quarterly, Vol. 44, Number 1 (2006), page 37.
FORMULA
G.f.: 2*x^7*(17 + 14*x)/(1 - x - x^2).
a(n) = a(n-1) + a(n-2).
From the g.f.: a(n) = 34*F(n-6) + 28*F(n-7) = 28*F(n-5) + 6*F(n-6) = 6*F(n-4) + 22*F(n-5) = 22*F(n-3) - 16*F(n-4) = -16*F(n-2) + 38*F(n-3) = 38*F(n-1) - 54*F(n-2) = -54*F(n) + 92*F(n-1), and so on.
a(n) = 2*A022125(n-5).
a(n) = F(n+2) + F(n-3) + F(n-11). - Greg Dresden, Jul 07 2022
MATHEMATICA
LinearRecurrence[{1, 1}, {34, 62}, 35]
PROG
(Magma) [2*Fibonacci(n-1)+9*Fibonacci(n-4)+9*Fibonacci(n-7): n in [7..40]];
(Magma) a0:=34; a1:=62; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..40]];
CROSSREFS
Sequence in context: A259952 A259945 A303239 * A115159 A125192 A039381
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Jan 24 2017
EXTENSIONS
Corrected and extended by Bruno Berselli, Jan 24 2017
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 22 23:01 EDT 2024. Contains 374544 sequences. (Running on oeis4.)