login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number T(n,k) of set partitions of [n] into exactly k blocks where sizes of distinct blocks are coprime; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
13

%I #18 Oct 18 2018 15:46:06

%S 1,0,1,0,1,1,0,1,3,1,0,1,4,6,1,0,1,15,10,10,1,0,1,6,75,20,15,1,0,1,63,

%T 21,245,35,21,1,0,1,64,476,56,630,56,28,1,0,1,171,540,2100,126,1386,

%U 84,36,1,0,1,130,4185,2640,6930,252,2730,120,45,1

%N Number T(n,k) of set partitions of [n] into exactly k blocks where sizes of distinct blocks are coprime; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

%H Alois P. Heinz, <a href="/A280880/b280880.txt">Rows n = 0..200, flattened</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Coprime_integers">Coprime integers</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_of_a_set">Partition of a set</a>

%e T(5,1) = 1: 12345.

%e T(5,2) = 15: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345, 1345|2, 134|25, 135|24, 13|245, 145|23, 14|235, 15|234, 1|2345.

%e T(5,3) = 10: 123|4|5, 124|3|5, 125|3|4, 134|2|5, 135|2|4, 1|234|5, 1|235|4, 145|2|3, 1|245|3, 1|2|345.

%e T(5,4) = 10: 12|3|4|5, 13|2|4|5, 1|23|4|5, 14|2|3|5, 1|24|3|5, 1|2|34|5, 15|2|3|4, 1|25|3|4, 1|2|35|4, 1|2|3|45.

%e T(5,5) = 1: 1|2|3|4|5.

%e Triangle T(n,k) begins:

%e 1;

%e 0, 1;

%e 0, 1, 1;

%e 0, 1, 3, 1;

%e 0, 1, 4, 6, 1;

%e 0, 1, 15, 10, 10, 1;

%e 0, 1, 6, 75, 20, 15, 1;

%e 0, 1, 63, 21, 245, 35, 21, 1;

%e 0, 1, 64, 476, 56, 630, 56, 28, 1;

%e 0, 1, 171, 540, 2100, 126, 1386, 84, 36, 1;

%e 0, 1, 130, 4185, 2640, 6930, 252, 2730, 120, 45, 1;

%p with(numtheory):

%p b:= proc(n, i, s) option remember; expand(

%p `if`(n=0 or i=1, x^n, b(n, i-1, select(x->x<=i-1, s))+

%p `if`(i>n or factorset(i) intersect s<>{}, 0, x*b(n-i, i-1,

%p select(x->x<=i-1, s union factorset(i)))*binomial(n, i))))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, {})):

%p seq(T(n), n=0..12);

%t b[n_, i_, s_] := b[n, i, s] = Expand[If[n == 0 || i == 1, x^n, b[n, i - 1, Select[s, # <= i - 1 &]] + If[i > n || FactorInteger[i][[All, 1]] ~Intersection~ s != {}, 0, x*b[n - i, i - 1, Select[ s ~Union~ FactorInteger[i][[All, 1]], # <= i - 1 &]]*Binomial[n, i]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, {}]]; Table[T[n], {n, 0, 12}] // Flatten (* _Jean-François Alcover_, Jan 20 2017, after _Alois P. Heinz_ *)

%Y Columns k=0-10 give: A000007, A057427, A194924, A280881, A280882, A280883, A280884, A280885, A280886, A280887, A280888.

%Y T(n+k,n) for k=0-4 give: A000012, A000217, A000292, A051880(n-1) if n>0, A000389(n+4).

%Y Row sums give A280275.

%Y T(2n,n) gives A280889.

%K nonn,tabl

%O 0,9

%A _Alois P. Heinz_, Jan 09 2017