%I #17 Oct 09 2021 03:34:34
%S 10,8,5,7,8,5,6,9,11,12,10,11,12,53,57,21,22,35,15,26,14,15,19,20,26,
%T 53,55,59,61,66,45,143,145,153,157,162,28,173,177,185,187,194,98,51,
%U 211,219,226,115,117,79,245,249,257,263,267,91,92,70,41,295,302
%N Denominator of the mediant of prime(n) / prime(n+1) and prime(n+2) / prime(n+3).
%C The mediant of two reduced proper fractions a/b and c/d is (a+c)/(b+d), the value of which is strictly between a/b and c/d.
%H Colin Barker, <a href="/A280871/b280871.txt">Table of n, a(n) for n = 1..1000</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Mediant_(mathematics)">Mediant</a>
%e The mediant of 2/3 and 5/7 is 7/10.
%t Map[Denominator[(#1 + #3)/(#2 + #4)] & @@ # &, Partition[Prime@ Range[64], 4, 1]] (* _Michael De Vlieger_, Oct 08 2021 *)
%o (PARI) vector(100, n, denominator((prime(n)+prime(n+2)) / (prime(n+1)+prime(n+3))))
%o (Python)
%o from math import gcd
%o from sympy import nextprime
%o def aupton(terms):
%o alst, p, q, r, s = [], 2, 3, 5, 7
%o while len(alst) < terms:
%o alst.append((q+s)//gcd(p+r, q+s))
%o p, q, r, s = q, r, s, nextprime(s)
%o return alst
%o print(aupton(61)) # _Michael S. Branicky_, Oct 08 2021
%Y Cf. A000040, A280870.
%K nonn,frac
%O 1,1
%A _Colin Barker_, Jan 09 2017