login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n!)^2 * Sum_{k=1..n} A008836(k)/k^2.
2

%I #17 Apr 13 2017 12:26:03

%S 1,3,23,404,9524,357264,16987536,1061800704,87631559424,8894837836800,

%T 1063107188812800,151494084266803200,25373057708287180800,

%U 5011895098867920076800,1135276451701834014720000,292340783888393707192320000,84048723407048386326036480000

%N a(n) = (n!)^2 * Sum_{k=1..n} A008836(k)/k^2.

%H Daniel Suteu, <a href="/A280654/b280654.txt">Table of n, a(n) for n = 1..100</a>

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Liouville_function">Liouville function</a>.

%F Limit_{n->infinity} a(n)/(n!)^2 = zeta(4)/zeta(2) = Pi^2/15.

%t Table[(n!)^2 * Sum[(-1)^PrimeOmega[k]/k^2, {k, n}], {n, 20}] (* _Indranil Ghosh_, Apr 13 2017 *)

%o (PARI) a(n) = (n!)^2 * sum(k=1,n,(-1)^bigomega(k)/k^2);

%Y Cf. A001044, A008836, A182448 (Pi^2/15).

%K nonn

%O 1,2

%A _Daniel Suteu_, Apr 12 2017