login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280650
Numbers k such that k^3 has an odd number of digits in base 2 and the middle digit is 0.
2
0, 3, 4, 12, 16, 17, 29, 30, 31, 43, 44, 46, 48, 50, 64, 65, 68, 78, 79, 80, 102, 104, 105, 107, 108, 109, 112, 114, 116, 117, 118, 121, 127, 163, 167, 169, 170, 172, 173, 174, 175, 176, 179, 183, 186, 187, 188, 189, 191, 192, 193, 195, 196, 198, 200, 202, 203
OFFSET
1,2
EXAMPLE
3^3 = 11(0)11_2, 43^3 = 10011011(0)10010011_2, 117^3 = 1100001110(0)0001001101_2.
MATHEMATICA
a[n_]:=Part[IntegerDigits[n, 2], (Length[IntegerDigits[n, 2]] + 1)/2];
Select[Range[0, 203], OddQ[Length[IntegerDigits[#^3, 2]]] && a[#^3]==0 &] (* Indranil Ghosh, Mar 06 2017 *)
md0Q[n_]:=Module[{idn2=IntegerDigits[n^3, 2], len}, len=Length[idn2]; OddQ[ len] &&idn2[[(len+1)/2]]==0]; Select[Range[0, 250], md0Q] (* Harvey P. Dale, Dec 15 2019 *)
PROG
(PARI) isok(k) = my(d=digits(k^3, 2)); (#d%2 == 1) && (d[#d\2 +1] == 0);
for(k=0, 203, if(k==0 || isok(k)==1, print1(k, ", "))); \\ Indranil Ghosh, Mar 06 2017
(Python)
i=0
j=1
while i<=203:
....n=str(bin(i**3)[2:])
....l=len(n)
....if l%2==1 and n[(l-1)/2]=="0":
........print (str(i))+", ",
........j+=1
....i+=1 # Indranil Ghosh, Mar 06 2017
CROSSREFS
Cf. A280651.
See A279430-A279431 for a k^2 version.
See A280640-A280649 for a base-10 version.
See A279420-A279429 for a k^2, base-10 version.
Sequence in context: A116653 A218967 A122757 * A282458 A360755 A348949
KEYWORD
nonn,base,easy,changed
AUTHOR
Lars Blomberg, Jan 12 2017
STATUS
approved