Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Jan 27 2019 05:10:54
%S 1184,1210,6232,6368,10744,10856,66928,66992,522405,525915,643336,
%T 652664,5459176,5495264,7677248,7684672,16137628,16150628,25596544,
%U 25640096,26090325,26138475,28118032,28128368,34364912,34380688,133178325,133471275,164733752,166212808
%N Amicable pairs where only deficient aliquot parts are considered.
%C Subsequence of A063990.
%e Deficient aliquot parts of 1184 are 1,2,4,8,16,32,37,74,148,296,592 and their sum is 1210.
%e Deficient aliquot parts of 1210 are 1,2,5,10,11,22,55,110,121,242,605 and their sum is 1184.
%p with(numtheory): P:=proc(q) local a,b,c,d,k,n; for n from 1 to q do
%p a:=sort([op(divisors(n))]); b:=0; for k from 1 to nops(a)-1 do if 2*a[k]>sigma(a[k]) then b:=b+a[k]; fi; od;
%p c:=sort([op(divisors(b))]); d:=0; for k from 1 to nops(c)-1 do if 2*c[k]>igma(c[k]) then d:=d+c[k]; fi; od; if d=n and d<>b then print(n); fi; od; end: P(10^6);
%t defQ[n_] := DivisorSigma[1,n] < 2n; s[n_] := DivisorSum[n, #&, #<n && defQ[#]&]; seq={}; Do[m=s[n]; If[m>n && s[m]==n, AppendTo[seq, {n,m}]], {n, 1, 10^5}]; Flatten[seq] (* _Amiram Eldar_, Jan 26 2019 *)
%Y Cf. A063990, A259180, A280515.
%K nonn,tabf
%O 1,1
%A _Paolo P. Lava_, Jan 04 2017
%E More terms from _Amiram Eldar_, Jan 26 2019