login
A280480
T(n,k)=Number of nXk 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
12
0, 1, 0, 0, 6, 0, 6, 22, 30, 0, 6, 63, 208, 158, 0, 30, 162, 997, 1939, 846, 0, 54, 381, 4070, 15104, 17406, 4446, 0, 158, 884, 15441, 100306, 214635, 149057, 22734, 0, 342, 1995, 55149, 618883, 2272190, 2886700, 1224092, 113310, 0, 846, 4478, 189470, 3589912
OFFSET
1,5
COMMENTS
Table starts
.0.......1.........0...........6............6...........30...........54
.0.......6........22..........63..........162..........381..........884
.0......30.......208.........997.........4070........15441........55149
.0.....158......1939.......15104.......100306.......618883......3589912
.0.....846.....17406......214635......2272190.....22475478....208736159
.0....4446....149057.....2886700.....48481917....767741328..11437392975
.0...22734...1224092....37224679....990070284..25082093017.599110195185
.0..113310...9717407...464804972..19550495121.792009247239
.0..552654..75078490..5658641517.375972018492
.0.2647390.567486429.67497024458
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 15*a(n-1) -87*a(n-2) +245*a(n-3) -348*a(n-4) +240*a(n-5) -64*a(n-6)
k=3: [order 9] for n>10
k=4: [order 21] for n>22
k=5: [order 38] for n>39
Empirical for row n:
n=1: a(n) = 3*a(n-1) +3*a(n-2) -11*a(n-3) -6*a(n-4) +12*a(n-5) +8*a(n-6)
n=2: [order 8] for n>10
n=3: [order 26] for n>32
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0. .0..0..1..1. .0..0..0..0. .0..0..0..1. .0..0..1..1
..1..1..0..0. .0..1..1..1. .1..1..0..0. .2..2..1..1. .1..1..0..0
..0..0..1..2. .0..1..1..2. .1..0..2..2. .2..2..2..2. .0..0..0..0
..1..1..2..2. .1..2..2..2. .2..2..1..1. .2..1..1..1. .2..0..0..0
CROSSREFS
Row 1 is A279865.
Sequence in context: A223033 A237444 A222918 * A223104 A222722 A222747
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 04 2017
STATUS
approved