%I #4 Jan 04 2017 06:25:50
%S 6,162,4070,100306,2272190,48481917,990070284,19550495121,
%T 375972018492,7077631558153,130917736928836,2386330581933385,
%U 42958320934899628,765084427823374321,13499826227679683140,236266604028642547153
%N Number of nX5 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
%C Column 5 of A280480.
%H R. H. Hardin, <a href="/A280477/b280477.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 97*a(n-1) -4351*a(n-2) +121477*a(n-3) -2399467*a(n-4) +36095593*a(n-5) -433751083*a(n-6) +4302824137*a(n-7) -36076741489*a(n-8) +260138945879*a(n-9) -1634410671437*a(n-10) +9036893350991*a(n-11) -44309716396137*a(n-12) +193798299192867*a(n-13) -759477171357849*a(n-14) +2675750789380099*a(n-15) -8495505866629978*a(n-16) +24347110001605948*a(n-17) -63040884009250736*a(n-18) +147519026920434464*a(n-19) -311897862888302240*a(n-20) +595345640987912896*a(n-21) -1024570940182920832*a(n-22) +1586788825852708096*a(n-23) -2206161690108318720*a(n-24) +2745071246419141632*a(n-25) -3045090489874046976*a(n-26) +2997217488412983296*a(n-27) -2602330276143177728*a(n-28) +1978627665127817216*a(n-29) -1305371480738463744*a(n-30) +738536355420831744*a(n-31) -352875159682940928*a(n-32) +139495141359484928*a(n-33) -44338619623669760*a(n-34) +10867575344857088*a(n-35) -1922382801403904*a(n-36) +217608813019136*a(n-37) -11785390260224*a(n-38) for n>39
%e Some solutions for n=4
%e ..0..0..1..1..1. .0..0..0..0..1. .0..0..1..0..0. .0..0..1..1..1
%e ..2..1..0..0..1. .0..0..0..1..1. .2..2..0..0..1. .0..1..1..1..0
%e ..1..0..0..1..2. .0..0..2..1..2. .2..0..0..1..1. .0..0..0..0..0
%e ..1..1..1..2..2. .1..1..1..1..1. .1..1..1..1..1. .1..0..0..2..2
%Y Cf. A280480.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 04 2017