Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #5 Jan 02 2017 19:15:07
%S 1,2,3,6,9,13,21,30,41,59,81,108,147,195,253,333,431,549,704,892,1119,
%T 1409,1758,2176,2697,3321,4065,4976,6061,7345,8898,10737,12901,15489,
%U 18535,22103,26333,31284,37056,43844,51751,60931,71655,84090,98464,115162
%N G.f.: Product_{k>=1} (1 + x^k) / (1 - x^(k*(k+1)/2)).
%C Convolution of A007294 and A000009.
%H Vaclav Kotesovec, <a href="/A280422/b280422.txt">Table of n, a(n) for n = 0..10000</a>
%F a(n) ~ exp(sqrt(n/3)*Pi + 3^(1/4) * Zeta(3/2) * n^(1/4) - 3*Zeta(3/2)^2/(8*Pi)) / (32 * 3^(3/4) * n^(5/4)).
%t nmax=60; CoefficientList[Series[Product[(1+x^k)/(1-x^(k*(k+1)/2)), {k, 1, nmax}], {x, 0, nmax}], x]
%Y Cf. A007294, A000009, A280276, A280424.
%K nonn
%O 0,2
%A _Vaclav Kotesovec_, Jan 02 2017