login
Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 262", based on the 5-celled von Neumann neighborhood.
5

%I #11 May 05 2024 01:43:29

%S 1,11,1,111,10001,100111,1000001,11000111,1000001,111000111,

%T 10000000001,100000000111,1000000000001,10000000000111,

%U 100000000000001,1000000000000111,10000000000000001,100000000000000111,1000000000000000001,10000000000000000111

%N Binary representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 262", based on the 5-celled von Neumann neighborhood.

%C Initialized with a single black (ON) cell at stage zero.

%D S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.

%H Robert Price, <a href="/A280414/b280414.txt">Table of n, a(n) for n = 0..126</a>

%H Robert Price, <a href="/A280414/a280414.tmp.txt">Diagrams of first 20 stages</a>

%H N. J. A. Sloane, <a href="http://arxiv.org/abs/1503.01168">On the Number of ON Cells in Cellular Automata</a>, arXiv:1503.01168 [math.CO], 2015

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ElementaryCellularAutomaton.html">Elementary Cellular Automaton</a>

%H S. Wolfram, <a href="http://wolframscience.com/">A New Kind of Science</a>

%H Wolfram Research, <a href="http://atlas.wolfram.com/">Wolfram Atlas of Simple Programs</a>

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%H <a href="https://oeis.org/wiki/Index_to_2D_5-Neighbor_Cellular_Automata">Index to 2D 5-Neighbor Cellular Automata</a>

%H <a href="https://oeis.org/wiki/Index_to_Elementary_Cellular_Automata">Index to Elementary Cellular Automata</a>

%F Conjectures from _Chai Wah Wu_, May 05 2024: (Start)

%F a(n) = a(n-2) for n > 31.

%F G.f.: (110000000000000000000000000000*x^31 + 10000000000000000000000000000*x^30 - 109000000000000000000000000000*x^29 - 9900000000000000000000000000*x^28 - 990000000000000000000000000*x^27 - 99000000000000000000000000*x^26 - 9900000000000000000000000*x^25 - 990000000000000000000000*x^24 - 99000000000000000000000*x^23 - 9900000000000000000000*x^22 - 990000000000000000000*x^21 - 99000000000000000000*x^20 - 9900000000000000000*x^19 - 990000000000000000*x^18 - 99000000000000000*x^17 - 9900000000000000*x^16 - 990000000000000*x^15 - 99000000000000*x^14 - 9900000000000*x^13 - 990000000000*x^12 - 99889000000*x^11 - 9999000000*x^10 - 100000000*x^9 - 10900000*x^7 - 990000*x^6 - 100000*x^5 - 10000*x^4 - 100*x^3 - 11*x - 1)/(x^2 - 1). (End)

%t CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0},{2, 1, 2}, {0, 2, 0}}, a, 2],{2}];

%t code = 262; stages = 128;

%t rule = IntegerDigits[code, 2, 10];

%t g = 2 * stages + 1; (* Maximum size of grid *)

%t a = PadLeft[{{1}}, {g, g}, 0,Floor[{g, g}/2]]; (* Initial ON cell on grid *)

%t ca = a;

%t ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];

%t PrependTo[ca, a];

%t (* Trim full grid to reflect growth by one cell at each stage *)

%t k = (Length[ca[[1]]] + 1)/2;

%t ca = Table[Table[Part[ca[[n]] [[j]],Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];

%t Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 10], {i, 1, stages - 1}]

%Y Cf. A280413, A280415, A280416.

%K nonn,easy

%O 0,2

%A _Robert Price_, Jan 02 2017