login
A280398
T(n,k) = Number of n X k 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
13
0, 0, 0, 2, 2, 0, 2, 6, 14, 0, 8, 16, 66, 74, 0, 14, 34, 238, 554, 358, 0, 36, 76, 769, 3002, 4250, 1666, 0, 74, 158, 2432, 15476, 35676, 31242, 7582, 0, 168, 336, 7440, 78540, 292622, 410670, 223706, 33978, 0, 358, 698, 22494, 388686, 2366358, 5338004
OFFSET
1,4
COMMENTS
Table starts
.0......0........2..........2............8............14............36
.0......2........6.........16...........34............76...........158
.0.....14.......66........238..........769..........2432..........7440
.0.....74......554.......3002........15476.........78540........388686
.0....358.....4250......35676.......292622.......2366358......18736311
.0...1666....31242.....410670......5338004......68842232.....874372050
.0...7582...223706....4627308.....95102542....1958524652...39877186802
.0..33978..1571978...51310794...1664838008...54763698930.1785907191220
.0.150486.10887706..561854184..28747146050.1510604213832
.0.660210.74545802.6090082758.490958066148
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1);
k=2: a(n) = 10*a(n-1) -33*a(n-2) +40*a(n-3) -16*a(n-4);
k=3: [order 6] for n>7;
k=4: [order 14] for n>15;
k=5: [order 24] for n>25;
k=6: [order 64] for n>65.
Empirical for row n:
n=1: a(n) = 2*a(n-1) +3*a(n-2) -4*a(n-3) -4*a(n-4) for n>5;
n=2: a(n) = 3*a(n-1) +a(n-2) -7*a(n-3) +4*a(n-5);
n=3: [order 17] for n>19;
n=4: [order 54] for n>59.
EXAMPLE
Some solutions for n=4, k=4
..0..0..0..0. .0..0..0..0. .0..0..1..1. .0..0..0..0. .0..1..1..1
..1..1..2..0. .1..1..1..2. .0..1..1..1. .1..1..1..1. .1..1..1..1
..1..2..0..0. .1..1..2..2. .0..0..0..0. .2..0..0..2. .0..0..1..1
..2..2..2..2. .1..2..2..0. .0..0..0..2. .0..0..2..2. .0..0..0..0
CROSSREFS
Sequence in context: A021458 A279741 A099064 * A052422 A294525 A011218
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 02 2017
STATUS
approved