Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #4 Jan 02 2017 10:43:20
%S 14,76,2432,78540,2366358,68842232,1958524652,54763698930,
%T 1510604213832,41217398832370,1114647477686056,29920032719159886,
%U 798082603602737708,21173055142435829418,559088423986703320232,14702530200374705949828
%N Number of nX6 0..2 arrays with no element unequal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Column 6 of A280398.
%H R. H. Hardin, <a href="/A280396/b280396.txt">Table of n, a(n) for n = 1..210</a>
%H R. H. Hardin, <a href="/A280396/a280396.txt">Empirical recurrence of order 64</a>
%F Empirical recurrence of order 64 (see link above)
%e Some solutions for n=4
%e ..0..1..1..2..2..1. .0..0..0..0..0..0. .0..0..1..1..1..1. .0..0..0..0..1..0
%e ..1..1..2..2..1..1. .1..0..0..0..1..1. .0..1..1..2..2..2. .0..0..0..0..0..0
%e ..0..0..0..0..2..2. .2..2..0..1..1..1. .1..1..1..1..0..0. .0..2..2..0..0..0
%e ..0..0..0..2..2..2. .2..0..0..0..0..0. .1..1..1..0..0..0. .2..2..2..2..2..2
%Y Cf. A280398.
%K nonn
%O 1,1
%A _R. H. Hardin_, Jan 02 2017