login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of Sum_{k>=1} k^3*x^(k^2)/(1 - x^k).
4

%I #15 Jan 02 2017 20:34:41

%S 1,1,1,9,1,9,1,9,28,9,1,36,1,9,28,73,1,36,1,73,28,9,1,100,126,9,28,73,

%T 1,161,1,73,28,9,126,316,1,9,28,198,1,252,1,73,153,9,1,316,344,134,28,

%U 73,1,252,126,416,28,9,1,441,1,9,371,585,126,252,1,73,28,477,1,828,1,9,153,73,344,252,1,710,757,9,1,659,126

%N Expansion of Sum_{k>=1} k^3*x^(k^2)/(1 - x^k).

%C The sum of the cubes of the divisors of n which are <= sqrt(n).

%H <a href="/index/Su#sums_of_divisors">Index entries for sequences related to sums of divisors</a>

%F G.f.: Sum_{k>=1} k^3*x^(k^2)/(1 - x^k).

%e The divisors of 12 which are <= sqrt(12) are {1,2,3}, so a(12) = 1^3 + 2^3 + 3^3 = 36.

%t nmax = 85; Rest[CoefficientList[Series[Sum[k^3 x^k^2/(1 - x^k), {k, 1, nmax}], {x, 0, nmax}], x]]

%t (* Second program *)

%t Table[Total[Select[Divisors@ n, # <= Sqrt@ n &]^3], {n, 85}] (* _Michael De Vlieger_, Jan 01 2017 *)

%o (PARI) a(n) = my(rn = sqrt(n)); sumdiv(n, d, d^3*(d<=rn)); \\ _Michel Marcus_, Jan 02 2017

%Y Cf. A001158, A038548, A066839, A095118.

%K nonn

%O 1,4

%A _Ilya Gutkovskiy_, Jan 01 2017