login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280351
Expansion of Sum_{k>=0} (x/(1 - x))^(k^3).
3
1, 1, 1, 1, 1, 1, 1, 1, 2, 9, 37, 121, 331, 793, 1717, 3433, 6436, 11441, 19449, 31825, 50389, 77521, 116281, 170545, 245158, 346105, 480701, 657802, 888058, 1184419, 1564435, 2063206, 2799487, 4272049, 8544097, 23535821, 77331981, 262534537, 865287625, 2720095405
OFFSET
0,9
COMMENTS
Number of compositions of n into a cube number of parts.
FORMULA
a(0) = 1; a(n) = Sum_{k=1..floor(n^(1/3))} binomial(n-1, k^3-1) for n > 0. - Jerzy R Borysowicz, Dec 22 2022
EXAMPLE
a(9) = 9 because we have:
[1] [9]
[2] [2, 1, 1, 1, 1, 1, 1, 1]
[3] [1, 2, 1, 1, 1, 1, 1, 1]
[4] [1, 1, 2, 1, 1, 1, 1, 1]
[5] [1, 1, 1, 2, 1, 1, 1, 1]
[6] [1, 1, 1, 1, 2, 1, 1, 1]
[7] [1, 1, 1, 1, 1, 2, 1, 1]
[8] [1, 1, 1, 1, 1, 1, 2, 1]
[9] [1, 1, 1, 1, 1, 1, 1, 2]
MAPLE
a := n -> ifelse(n = 0, 1, add(binomial(n - 1, k^3 - 1), k = 1..floor(n^(1/3)))):
seq(a(n), n = 0..39); # Peter Luschny, Dec 23 2022
MATHEMATICA
nmax = 39; CoefficientList[Series[Sum[(x/(1 - x))^k^3, {k, 0, nmax}], {x, 0, nmax}], x]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ilya Gutkovskiy, Jan 01 2017
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Dec 17 2022
STATUS
approved