login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [1, -2].
2

%I #25 May 08 2017 18:43:51

%S 3,7,12,25,48,97,192,385,768,1537,3072,6145,12288,24577,49152,98305,

%T 196608,393217,786432,1572865,3145728,6291457,12582912,25165825,

%U 50331648,100663297,201326592,402653185,805306368,1610612737,3221225472,6442450945,12884901888

%N a(0) = 3, a(n+1) = 2*a(n) + periodic sequence of length 2: repeat [1, -2].

%C a(n) mod 9 is a periodic sequence of length 2: repeat [3, 7].

%C From 7, the last digit is of period 4: repeat [7, 2, 5, 8].

%C (Main sequence for the signature (2,1,-2): 0, 0, 1, 2, 5, 10, 21, 42, ... = 0 followed by A000975(n) = b(n), which first differences are A001045(n) (Paul Barry, Oct 08 2005). Then, 0 followed by b(n) is an autosequence of the first kind. The corresponding autosequence of the second kind is 0, 0, 2, 3, 8, 15, 32, 63, ... . See A277078(n).)

%C Difference table of a(n):

%C 3, 7, 12, 25, 48, 97, 192, ...

%C 4, 5, 13, 23, 49, 95, 193, ... = -(-1)^n* A140683(n)

%C 1, 8, 10, 26, 46, 98, 190, ... = A259713(n)

%C 7, 2, 16, 20, 52, 92, 196, ...

%C -5, 14, 4, 32, 40, 104, 184, ...

%C ... .

%H Colin Barker, <a href="/A280345/b280345.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (2,1,-2).

%F a(2n) = 3*4^n, a(2n+1) = 6*4^n + 1.

%F a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3), n>2.

%F a(n+2) = a(n) + 9*2^n.

%F a(n) = 2^(n+2) - A051049(n).

%F From _Colin Barker_, Jan 01 2017: (Start)

%F a(n) = 3*2^n for n even.

%F a(n) = 3*2^n + 1 for n odd.

%F G.f.: (3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)).

%F (End)

%F Binomial transform of 3, followed by (-1)^n* A140657(n).

%e a(0) = 3, a(1) = 2*3 + 1 = 7, a(2) = 2*7 - 2 = 12, a(3) = 2*12 + 1 = 25.

%t a[0] = 3; a[n_] := a[n] = 2 a[n - 1] + 1 + (-3) Boole[EvenQ@ n]; Table[a@ n, {n, 0, 32}] (* or *)

%t CoefficientList[Series[(3 + x - 5 x^2)/((1 - x) (1 + x) (1 - 2 x)), {x, 0, 32}], x] (* _Michael De Vlieger_, Jan 01 2017 *)

%o (PARI) Vec((3 + x - 5*x^2) / ((1 - x)*(1 + x)*(1 - 2*x)) + O(x^40)) \\ _Colin Barker_, Jan 01 2017

%Y Cf. A005010, A051049, A140657, A140683, A164346, A199116, A259713.

%K nonn,easy

%O 0,1

%A _Paul Curtz_, Jan 01 2017

%E More terms from _Colin Barker_, Jan 01 2017