%I #25 Sep 08 2022 08:46:18
%S 1,7,2,5,9,8,2,4,5,7,8,7,8,7,1,9,1,0,8,7,1,9,0,8,5,3,1,9,4,0,6,2,0,8,
%T 5,3,6,6,5,9,6,0,2,6,6,2,0,5,9,5,4,9,4,2,7,6,7,8,7,5,2,9,0,9,1,6,0,3,
%U 5,0,9,8,6,4,8,6,6,0,6,8,9,9,2,4,3,0,1
%N Decimal expansion of log(27)/log(27/4).
%C Appears as an exponent in an upper bound on the number of partitions of a set into disjoint unions; related to the ASTRAL algorithm in phylogenetic reconstruction.
%H G. C. Greubel, <a href="/A280234/b280234.txt">Table of n, a(n) for n = 1..10000</a>
%H Daniel Kane and Terence Tao, <a href="https://arxiv.org/abs/1702.00912">A bound on partitioning clusters</a>, arXiv:1702.00912 [math.CO] (2017).
%H Daniel Kane and Terence Tao, <a href="https://www.combinatorics.org/ojs/index.php/eljc/article/view/v24i2p31">A bound on partitioning clusters</a>, Electronic Journal of Combinatorics, 24 (2) (2017), Article P2.31.
%H <a href="/index/Tra#transcendental">Index entries for transcendental numbers</a>
%e 1.72598245787871910871908531940620853665960266205954942767875290916035...
%t RealDigits[N[Log[27]/(Log[27/4]), 100]] [[1]] (* _Vincenzo Librandi_, Feb 24 2017 *)
%o (PARI) log(27)/log(27/4)
%o (Magma) SetDefaultRealField(RealField(100)); Log(27)/Log(27/4); // _G. C. Greubel_, Oct 13 2018
%Y Cf. A016627 (log(4)), A016650 (log(27)).
%K cons,nonn
%O 1,2
%A _Charles R Greathouse IV_, Feb 24 2017
%E More digits from _Jon E. Schoenfield_, Mar 15 2018