%I #4 Dec 26 2016 07:54:50
%S 2,28,168,1030,5802,31608,171100,916768,4882310,25849910,136148532,
%T 713757316,3726366076,19383636846,100497836596,519525218302,
%U 2678590148146,13777413523624,70710464750916,362190825607320
%N Number of nX4 0..2 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors, with the exception of exactly one element, and with new values introduced in order 0 sequentially upwards.
%C Column 4 of A280124.
%H R. H. Hardin, <a href="/A280120/b280120.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 6*a(n-1) +25*a(n-2) -148*a(n-3) -307*a(n-4) +1228*a(n-5) +2475*a(n-6) -3210*a(n-7) -14762*a(n-8) -9146*a(n-9) +59251*a(n-10) +78496*a(n-11) -107489*a(n-12) -241242*a(n-13) -88943*a(n-14) +526534*a(n-15) +556734*a(n-16) -621460*a(n-17) -529201*a(n-18) -198256*a(n-19) -192232*a(n-20) +1078880*a(n-21) +376432*a(n-22) -508032*a(n-23) +30976*a(n-24) -331776*a(n-25) -28672*a(n-26) +229376*a(n-27) -65536*a(n-28) for n>34
%e Some solutions for n=4
%e ..0..0..1..1. .0..1..1..1. .0..1..1..1. .0..0..0..0. .0..0..1..1
%e ..0..0..1..0. .0..0..1..1. .0..1..1..1. .1..0..0..0. .0..1..1..1
%e ..0..0..0..0. .0..0..0..1. .1..1..1..0. .2..2..0..0. .0..1..1..1
%e ..0..0..0..0. .0..0..0..1. .1..1..0..0. .2..2..0..0. .0..1..1..1
%Y Cf. A280124.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 26 2016