login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A007429 (Sum_{d|n} sigma(d)).
5

%I #30 Sep 08 2022 08:46:18

%S 1,5,10,21,28,48,57,83,101,129,142,197,212,248,283,340,359,431,452,

%T 529,574,626,651,781,819,879,937,1036,1067,1207,1240,1360,1425,1501,

%U 1564,1762,1801,1885,1960,2142,2185,2365,2410,2553,2679,2779,2828,3113,3179

%N Partial sums of A007429 (Sum_{d|n} sigma(d)).

%C sigma(n) is the sum of the divisors of n (A000203).

%H Vaclav Kotesovec, <a href="/A280077/b280077.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = Sum_{i=1..n} A007429(i).

%F a(n) = Sum_{k=1..n} A000203(k) * floor(n/k). - _Daniel Suteu_, May 28 2018

%F a(n) = Sum_{k=1..n} A000005(k)/2 * floor(n/k) * floor(1+n/k). - _Daniel Suteu_, May 28 2018

%F a(n) ~ Pi^4 * n^2 / 72. - _Vaclav Kotesovec_, Nov 06 2018

%F G.f.: (1/(1-x)) * Sum_{k>=1} sigma(k) * x^k/(1 - x^k). - _Seiichi Manyama_, Jul 24 2022

%o (Magma) [&+[&+[SumOfDivisors(d): d in Divisors(k)]: k in [1..n]]: n in [1..100]]

%o (PARI) a(n) = sum(k=1, n, sumdiv(k, d, sigma(d))); \\ _Michel Marcus_, May 29 2018

%o (PARI) my(N=50, x='x+O('x^N)); Vec(sum(k=1, N, sigma(k)*x^k/(1-x^k))/(1-x)) \\ _Seiichi Manyama_, Jul 24 2022

%Y Cf. A000203, A237349 (partial sums of A211776), A280078 (partial products of A007429).

%K nonn

%O 1,2

%A _Jaroslav Krizek_, Dec 25 2016