|
|
A280064
|
|
Number of n X 3 0..1 arrays with no element unequal to a strict majority of its horizontal, vertical and antidiagonal neighbors and with new values introduced in order 0 sequentially upwards.
|
|
1
|
|
|
1, 2, 5, 15, 39, 104, 281, 771, 2122, 5858, 16174, 44694, 123510, 341403, 943694, 2608709, 7211359, 19935055, 55108220, 152341402, 421132682, 1164181573, 3218268552, 8896600238, 24593808939, 67987267220, 187944382019, 519554527901
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) + a(n-2) - 6*a(n-3) + 5*a(n-4) - 2*a(n-5) - 2*a(n-6) - a(n-7) for n>9.
Empirical g.f.: x*(1 + x)*(1 - 2*x + 4*x^3 - 8*x^4 + 2*x^5 - x^6 - x^7) / ((1 - x + x^2)*(1 - 2*x - 4*x^2 + 4*x^3 + 3*x^4 + x^5)). - Colin Barker, Feb 12 2019
|
|
EXAMPLE
|
Some solutions for n=4:
..0..0..0. .0..1..1. .0..1..1. .0..0..0. .0..0..0. .0..0..0. .0..0..0
..0..0..0. .0..1..1. .0..1..1. .0..0..0. .0..0..0. .1..1..0. .0..0..0
..0..1..1. .0..1..1. .0..0..1. .0..0..1. .1..1..0. .1..1..0. .1..1..1
..1..1..1. .0..0..0. .0..0..1. .0..1..1. .1..1..0. .1..0..0. .1..1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|