Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #15 Sep 06 2018 11:10:32
%S 1,-2,10,-2,16,-184,456,-184,16,-272,5776,-30736,55504,-30736,5776,
%T -272,7936,-284288,2555008,-8998016,13801600,-8998016,2555008,-284288,
%U 7936,-353792,20594432,-280444416,1567885056,-4267790592,5960135424,-4267790592,1567885056,-280444416,20594432,-353792
%N Irregular triangle read by rows: numbers (2n-1)!*F(n,m) related to Fekete polynomials.
%H Lars Blomberg, <a href="/A280033/b280033.txt">Table of n, a(n) for n = 1..625</a> (The first 25 rows)
%H Christian Günther, Kai-Uwe Schmidt, <a href="http://arxiv.org/abs/1602.01750">L^q norms of Fekete and related polynomials</a>, arXiv:1602.01750 [math.NT], 2016. See Cor. 2.6.
%e Initial rows are:
%e 1,
%e -2,10,-2,
%e 16,-184,456,-184,16,
%e -272,5776,-30736,55504,-30736,5776,-272,
%e 7936,-284288,2555008,-8998016,13801600,-8998016,2555008,-284288,7936,
%e ...
%t (* "gen" stands for "generalized Eulerian number" *)
%t gen[n_, x_] := Sum[(-1)^j Binomial[n+1, j] (x+1-j)^n, {j, 0, Floor[x+1]}];
%t T[k_] := T[k] = 1 - Sum[Binomial[2k-1, 2j-1] T[j], {j, 1, k-1}];
%t F[0, 0] = 1; F[k_, m_] /; 1 <= m <= 2k-1 := F[k, m] = Sum[Binomial[2k-1, 2j - 1] T[j]/(2j-1)! Sum[gen[2j-1, i-1] F[k-j, m-i], {i, 0, m}], {j, 1, k}]; F[_, _] = 0;
%t Table[(2k-1)! F[k, m], {k, 1, 6}, {m, 1, 2k-1}] // Flatten (* _Jean-François Alcover_, Sep 06 2018 *)
%Y Cf. A280034, A280035.
%K sign,tabf
%O 1,2
%A _N. J. A. Sloane_, Dec 28 2016
%E More terms from _Lars Blomberg_, Jun 14 2017