|
|
A279977
|
|
T(n,k) is the number of n X k 0..1 arrays with no element equal to a strict majority of its horizontal and antidiagonal neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
|
|
14
|
|
|
0, 1, 0, 0, 3, 0, 3, 9, 9, 0, 3, 24, 50, 31, 0, 9, 62, 221, 296, 108, 0, 15, 134, 822, 1922, 1650, 366, 0, 31, 277, 2669, 10491, 15511, 8666, 1205, 0, 57, 542, 8068, 50690, 124030, 118857, 43543, 3873, 0, 108, 1035, 23169, 226771, 887491, 1393359, 876704, 211650
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,5
|
|
LINKS
|
|
|
FORMULA
|
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 9*a(n-1) -30*a(n-2) +45*a(n-3) -30*a(n-4) +9*a(n-5) -a(n-6)
k=3: [order 9] for n>10
k=4: [order 24]
k=5: [order 38] for n>39
k=6: [order 96] for n>97
Empirical for row n:
n=1: a(n) = 3*a(n-1) -5*a(n-3) +3*a(n-5) +a(n-6)
n=2: [order 8] for n>10
n=3: [order 24] for n>30
n=4: [order 68] for n>78
|
|
EXAMPLE
|
Table starts:
.0.....1.......0.........3...........3............9.............15
.0.....3.......9........24..........62..........134............277
.0.....9......50.......221.........822.........2669...........8068
.0....31.....296......1922.......10491........50690.........226771
.0...108....1650.....15511......124030.......887491........5870751
.0...366....8666....118857.....1393359.....14787217......144819856
.0..1205...43543....876704....15071233....237386464.....3444870482
.0..3873..211650...6281773...158391708...3703836674....79672440007
.0.12207.1002602..43997218..1627160233..56499013470..1801951754910
.0.37859.4652327.302544617.16409869901.846166990079.40020022178950
...
Some solutions for n=4 and k=4:
..0..1..0..0. .0..1..0..0. .0..1..0..1. .0..0..1..0. .0..1..0..1
..0..0..1..0. .0..1..1..0. .0..1..0..0. .1..0..1..0. .1..0..1..1
..1..1..1..1. .0..0..1..1. .1..0..1..1. .0..1..0..1. .1..0..1..1
..1..0..0..1. .0..0..1..0. .0..0..0..1. .1..0..0..1. .0..1..0..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|