login
A279962
Decimal representation of the x-axis, from the origin to the right edge, of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 221", based on the 5-celled von Neumann neighborhood.
4
1, 1, 2, 3, 28, 15, 112, 63, 448, 255, 1792, 1023, 7168, 4095, 28672, 16383, 114688, 65535, 458752, 262143, 1835008, 1048575, 7340032, 4194303, 29360128, 16777215, 117440512, 67108863, 469762048, 268435455, 1879048192, 1073741823, 7516192768, 4294967295
OFFSET
0,3
COMMENTS
Initialized with a single black (ON) cell at stage zero.
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
Conjectures from Colin Barker, Dec 24 2016: (Start)
a(n) = 2^(n-3) * (5*(-1)^n + 9) for n>2 and even.
a(n) = (5*(-2)^n + 9*2^n - 8)/8 for n>2 and odd.
a(n) = 5*a(n-2) - 4*a(n-4) for n>6.
G.f.: (1 + x - 3*x^2 - 2*x^3 + 22*x^4 + 4*x^5 - 20*x^6) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 + 2*x)).
(End)
MATHEMATICA
CAStep[rule_, a_] := Map[rule[[10 - #]] &, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code = 221; stages = 128;
rule = IntegerDigits[code, 2, 10];
g = 2 * stages + 1; (* Maximum size of grid *)
a = PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca = a;
ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k = (Length[ca[[1]]] + 1)/2;
ca = Table[Table[Part[ca[[n]] [[j]], Range[k + 1 - n, k - 1 + n]], {j, k + 1 - n, k - 1 + n}], {n, 1, k}];
Table[FromDigits[Part[ca[[i]] [[i]], Range[i, 2 * i - 1]], 2], {i , 1, stages - 1}]
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert Price, Dec 23 2016
STATUS
approved