The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279863 Number of maximal transitive finitary sets with n brackets. 3
 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 2, 2, 1, 1, 4, 3, 4, 2, 5, 6, 10, 8, 11, 11, 20, 22, 29, 36, 45, 53, 77, 83, 108, 141, 172, 208, 274, 323 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,18 COMMENTS A finitary set is transitive if every element is also a subset. A set system is maximal if the union is also a member. LINKS Table of n, a(n) for n=1..45. Gus Wiseman, Maximal transitive identity trees up to n=25 EXAMPLE The a(23)=3 maximal transitive finitary sets are: (()(())(()(()))((())(()(())))(()(())(()(())))), (()(())((()))(((())))(()((())))(()(())((())))), (()(())((()))(()(()))(()((())))(()(())((())))). MATHEMATICA maxtransfins[n_]:=If[n===1, {}, Select[Union@@FixedPointList[Complement[Union@@Function[fin, Cases[Complement[Subsets[fin], fin], sub_:>With[{nov=Sort[Append[fin, sub]]}, nov/; Count[Union[nov, {Union@@nov}], _List, {0, Infinity}]<=n]]]/@#, #]&, {{}}], And[Count[#, _List, {0, Infinity}]===n, MemberQ[#, Union@@#]]&]]; Table[Length[maxtransfins[n]], {n, 20}] CROSSREFS Cf. A001192, A004111, A276625, A279065, A279614, A279861. Sequence in context: A128315 A198329 A123566 * A201757 A053390 A140643 Adjacent sequences: A279860 A279861 A279862 * A279864 A279865 A279866 KEYWORD nonn AUTHOR Gus Wiseman, Dec 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 8 11:34 EDT 2023. Contains 363164 sequences. (Running on oeis4.)