login
Partition an n X n square into multiple integer-sided rectangles where no one is a translation of any other. a(n) is ceiling(n/log(n)) - the least possible difference between the largest and smallest area.
1

%I #23 Jan 02 2017 19:54:36

%S 1,1,1,1,1,1,2,1,1,1,2,2,1,1,2,1,1,3,1,2,2,2,2,2,2,2,2,1,3,4,4,2,3,3,

%T 3,3,3,3,4,4,4,4,3

%N Partition an n X n square into multiple integer-sided rectangles where no one is a translation of any other. a(n) is ceiling(n/log(n)) - the least possible difference between the largest and smallest area.

%C If ceiling(n/log(n)) is an upper bound for the Mondrian Art Problem variant (A279596), a(n) is the amount by which the optimal value beats the upper bound.

%C Terms a(3) to a(45) verified optimal by R. Gerbicz.

%C Term a(103) is at least 9, defect 14 (630-616) with 17 rectangles.

%C Best values known for a(46) to a(96): 3, 1, 2, 1, 1, 5, 2, 2, 1, 2, 2, 1, 1, 0, 3, 0, 2, 1, 2, 0, 0, 1, 1, 1, 1, 0, 1, 1, 4, 1, 0, 2, 0, 3, 1, 4, 3, 1, 1, 4, 2, 3, 1, 0, 4, 4, 0, 1, 1, 0, 0.

%H Mersenneforum.org puzzles, <a href="http://mersenneforum.org/showthread.php?t=21775">Mondrian art puzzles</a>.

%H Ed Pegg Jr, <a href="http://demonstrations.wolfram.com/MondrianArtProblem/">Mondrian Art Problem</a>.

%H Ed Pegg Jr, <a href="http://math.stackexchange.com/questions/2041189/mondrian-art-problem-upper-bound-for-defect">Mondrian Art Problem Upper Bound for defect</a>.

%Y Cf. A278970, A276523, A279596.

%K hard,more,nonn

%O 3,7

%A _Ed Pegg Jr_, Dec 21 2016

%E a(28)-a(45) from _Robert Gerbicz_, Jan 01 2017