login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of the coefficients in g.f. A(x) such that: sn(x,-A(x)) = x, where sn(x,m) is a Jacobi elliptic function.
4

%I #14 Mar 12 2017 16:47:21

%S 1,3,9,212,774,2986491,11962183,5866732236,24717532254,

%T 155049859325162,8766713183100126,1242400321151564076,

%U 157798597956508868,141417442289739551841,3032690837599386922473477,272243517649610491264579553148,1244664961615535298800024043306

%N Numerators of the coefficients in g.f. A(x) such that: sn(x,-A(x)) = x, where sn(x,m) is a Jacobi elliptic function.

%C Denominators are given by A279835.

%C The g.f. A(x) of this sequence equals the square of the g.f. of A279832.

%H Paul D. Hanna, <a href="/A279834/b279834.txt">Table of n, a(n) for n = 0..50</a>

%F G.f. A = A(x) satisfies:

%F (1) sd( x*sqrt(1+A), A/(1+A) ) = x*sqrt(1+A), where sd(x,m) = sn(x,m)/dn(x,m) is a Jacobi elliptic function.

%F (2) sn(2*x, -A(x)) = 2*x*sqrt(1-x^2)*sqrt(1 + x^2*A)/(1 + x^4*A).

%F (3) y = sn(x/2, -A(x)) is a solution to the equation:

%F x^2*(1 + A*y^4)^2 = 4*y^2*(1-y^2)*(1 + A*y^2).

%e This sequence gives the numerators of the coefficients in g.f. A(x), such that

%e A(x) = 1 + 3/5*x^2 + 9/25*x^4 + 212/875*x^6 + 774/4375*x^8 + 2986491/21896875*x^10 + 11962183/109484375*x^12 + 5866732236/65143203125*x^14 + 24717532254/325716015625*x^16 + 155049859325162/2382612654296875*x^18 + 8766713183100126/154869822529296875*x^20 + 1242400321151564076/24934041427216796875*x^22 + 157798597956508868/3562005918173828125*x^24 + 141417442289739551841/3559956170522705078125*x^26 + 3032690837599386922473477/84510816662372930908203125*x^28 + 272243517649610491264579553148/8344175483159391333221435546875*x^30 + 1244664961615535298800024043306/41720877415796956666107177734375*x^32 + 309586737719752481090144972054844018/11291964076972525306465238189697265625*x^34 + 1428965605601484765267196303905398982/56459820384862626532326190948486328125*x^36 + 1900644020251253780726568413610042774696/81019842252277869073888084011077880859375*x^38 + 10448090522732112432951611797351884498204/478753613308914680891156860065460205078125*x^40 +...

%e satisfies: sn(x,-A(x)) = x.

%e RELATED SERIES.

%e The Jacobi elliptic function sn(x,m) begins:

%e sn(x,m) = x - (m + 1)*x^3/3! + (m^2 + 14*m + 1)*x^5/5! - (m^3 + 135*m^2 + 135*m + 1)*x^7/7! + (m^4 + 1228*m^3 + 5478*m^2 + 1228*m + 1)*x^9/9! - (m^5 + 11069*m^4 + 165826*m^3 + 165826*m^2 + 11069*m + 1)*x^11/11! + (m^6 + 99642*m^5 + 4494351*m^4 + 13180268*m^3 + 4494351*m^2 + 99642*m + 1)*x^13/13! - (m^7 + 896803*m^6 + 116294673*m^5 + 834687179*m^4 + 834687179*m^3 + 116294673*m^2 + 896803*m + 1)*x^15/15! +...

%e which equals x when m = -A(x).

%o (PARI) /* Code to list first N nonzero terms of vector A: */ {N=20;

%o /* Generate 2*N terms of Jacobi Elliptic Function SN: */

%o SN = serreverse(intformal(1/sqrt((1-x^2)*(1-m*x^2) +x*O(x^(2*N+2))) ));

%o /* Print N terms of this sequence: */

%o A=[1]; print1(A[1], ", ");

%o for(i=1, N, A = concat(A, [0, 0]);

%o A[#A] = 6*polcoeff(x - subst(SN, m, -Ser(A)), #A+2);

%o print1( numerator(A[#A]), ", ") ); }

%Y Cf. A279835, A279832, A279833, A060628.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Dec 26 2016